viernes, 8 de mayo de 2015

Una persona ha ido a comer a un restaurante

Enunciat:
Una persona ha anat a dinar a un restaurant. Li ha costat $9,50 \; \text{euros}$   ( amb un IVA del $10 \,\%$ inclòs sobre el preu del dinar ). Si aquest impost no fos de tipus reduït (del $10\%$, aplicat als restaurants i a l'hostatgeria ), ans fos del tipus habitual per al comerç ( $21\%$ ), quant li hauria costat el dinar ?


Solució:

Anomenem:
    $x$, al preu del dinar ( sense el càrrec de l'impost del $10\%$ )
    $y$, a la quantitat a pagar ( amb el càrrec de l'impost del $21\%$ sobre $x$ )

Plantegem les següents proporcions:

    $\dfrac{100}{100+110}=\dfrac{x}{9,50} \quad \quad \quad (1)$


    $\dfrac{100+21}{100}=\dfrac{y}{x} \quad \quad \quad (2)$

Multiplicant, membre a membre, les igualtats (2) i (1), s'obté

    $\dfrac{121}{100}\cdot \dfrac{100}{110}=\dfrac{y}{x}\cdot \dfrac{x}{9,50}$

expressió que, simplificant $x$, queda

    $\dfrac{121}{110}=\dfrac{y}{9,50}$

i, d'aquí, s'ha de complir que

    $121 \cdot 9,50 = 110 \, y$

llavors,

    $y=9,50 \cdot \dfrac{121}{110}$

        $=10,45 \; \text{euros}$

$\square$

No hay comentarios:

Publicar un comentario

Gracias por tus comentarios