Imaginemos que, navegando en el océano Antártico, cerca del contienente, avistamos un témpano de hielo desprendido de un glaciar (hielo continental). Estimamos que el volumen emergido es de $150\,\text{m}^3$ y nos preguntamos cuál es el volumen total del témpano y cuál es su masa.
Sabemos (dato) que el $89,5\,\%$ del volumen total de un témpano de hielo continental está sumergido, el volumen emergido representa un $100\,\%-89,5\,\%=10,5\,\%$ del volum total; entonces, basta con hacer un cálculo de proporcionalidad dirrecta para determinar el volumen total $V$ de dicho témpano: $\dfrac{100}{10,5}=\dfrac{V}{150}$, con lo cual $V=\dfrac{150\cdot 100}{10,5}\approx 1429\,\text{m}^3$. Como conocemos también la densida del hielo continental (otro dato), $d_{hc}=917\,\dfrac{\text{kg}}{\text{m}^3}$, la masa que estimamos de ese témpano es de $917\,\dfrac{\text{kg}}{\text{m}^3}\cdot 1\,429\,\text{m}^3 = 1\,310\,393\,\text{kg}$.
Otra pregunta interesante que nos podemos hacer es la siguiente: Al estar dicho témpano de hielo formado de agua dulce, pues es hielo desprendido de un glaciar (cada litro de agua dulce tiene una masa de $1$ kilogramo) y si fuese posible aprovecharlo para el suministro de agua de una base antártica en la que viven $20$ personas, ¿para cuántos días se dispondría de agua dulce, contando con un consumo estimativo de $50\,\text{L}$ por persona y día?
Pues bien, haciendo otro sencillo cálculo de proporcionalidad directa encontramos que el suministro duraría $\dfrac{1\,310\,393\,\text{L}}{20\cdot 50 \dfrac{\text{L}}{\text{día}}} \approx 1\,310\,\text{días}$. $\diamond$
No hay comentarios:
Publicar un comentario
Gracias por tus comentarios