Processing math: 100%

lunes, 6 de febrero de 2023

El número 60 como base de numeración

El número 60 tiene muchos divisores, muchos más que el número 10 que es nuestra base de numeración (decimal); ello es una ventaja a la hora de realizar operaciones matemáticas (matemática asirio-babilónica), tal como veremos también en el sorprendente ejemplo del siguiente párrafo. Además, como bien sabemos, 60 se sigue empleando en el sistema de unidades sexagesimales para contabilizar las partes de 1 hora, y las de 1 minuto; es un legado de dichas civilizaciones, que todavía seguimos utilizando.:

Es muy sencillo ver cuáles son estos divisores, empleando alguna herramienta automática como, por ejemplo, WolframAlpha, tal como os muestro en la siguiente figura (Fig. 2).

Fig. 1 Obtención del conjunto de divisores de 60 mediante la herramienta automática WolframAlpha

Si bien se nos antoja engorroso el uso de un sistema de numeración con una base tan grande, bien que se empleó en las antiguas civilizaciones mesopotámicas (sumerios, semitas, acadios, asirios, babilonios, amorreos y arameos), entre (aproximadamente) el 3500 a.C. y el 550 a.C. (matemática asirio-babilónica), tal como se refleja en las tablillas de arcilla cocida que empleaban para registrarlas, como tal es el caso de la tablilla catalogada como YBC 7289 (Fig. 2), en la que se muestra una aproximación de \sqrt{2}, empleando el sistema de numeración en base 60, que se considera el primer sistema numérico posicional (anterior a nuestro sistema decimal): \sqrt{2}\approx 1 + 24/60 + 51/60^2 + 10/60^3 = 1.4142.

Fig. 2 (créditos de la imagen: Wikipedia, [https://es.wikipedia.org/wiki/Matemática_babilónica/media/Archivo:Ybc7289-bw.jpg])

Al parecer, el sistema de numeración en base 60 surgió a partir de las observaciones de astronomia posicional que ya hacían los antiguos astrónomos en Mesopotamia; al clasificar los objetos en el cielo nocturno para el estudio de eclipses y elaboración del calendario (babilonio), encontraron este número de objetos. Nótese que 60 es divisor de 360, como lo es también 12 (el número de meses de nuestro calendario); ambos números tienen un surtido número de divisores.

El número 360 sigue empleándose en los cálculos y registros de matemática comercial/fianciara: el número de días del año comercial es de 360, y ello es debido a las ventajas de comodidad de cómputo que presenta cerrar las operaciones anuales con este período de días. Ya hemos visto que 60 tienen muchos divisores, y, claro, también tiene muchos divisores (todavía más) el número 360, como podemos comprobar rápidamente con alguna herramienta auotomática (WolframAlpha). Vedlo en la siguiente imagen.

Fig. 3 Obtención del conjunto de divisores de 60 mediante la herramienta automática WolframAlpha
Fig. 4. Divisores de 12

\diamond

-oOo-

Referencias:

  [1] WolframAlpha: https://www.wolframalpha.com/.
  [2] vv.aa., https://es.wikipedia.org/wiki/Matemática_babilónica, Wikipedia, 2023.